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Outline of this talk . Los Alamos

B Brief review of theory and experiments
on the Casimir force

B Materials effects: Casimir repulsion with metamaterials

B Conclusions

Collaborators
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Felipe da Rosa (LANL)

Experiment: ~ Antoniette Taylor (CINT, LANL)
Steve Lamoreaux (Yale)
Ricardo Decca (Indiana)




The Casimir force . Los Alamos

Casimir forces originate from changes in quantum
vacuum fluctuations imposed by surface boundaries

They were predicted by the Dutch physicist Hendrik
Casimir in 1948

Dominant interaction in the micron and sub-micron
lengthscales

2
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Casimir forces originate from changes in quantum
vacuum fluctuations imposed by surface boundaries

They were predicted by the Dutch physicist Hendrik
Casimir in 1948

Dominant interaction in the micron and sub-micron
lengthscales

2
m he (130nN/cm? @Q d = 1pum)

Classical Analog: LAlbum du Marin (1836)




Relevant applications

B Quantum Science and Technology:

Atom-surface interactions

Precision measurements

B Nanotechnology:

Problems with stiction of
movable parts in MEMS

Zhao et al (2003)

Cornell et al (2007)

Actuation in NEMS and MEMS
driven by Casimir forces

Capasso et al (2001)
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@ Torsion pendulum

sphere-plane, d=1-10 um
Lamoreaux
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Modern Casimir experiments . ioatamos

@ Torsion pendulum B Atomic force microscope

sphere-plane, d=1-10 um sphere-plane, d=200-1000 nm

Lamoreaux Mohideen et al
B8 MEMS and NEMS B Micro-cantilever

sphere-plane, d=200-1000 nm plane-plane, cylinder-plane, d=1-3 um
Capasso et al, Decca et al Onofrio et al
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Tailoring the Casimir force - Los Alamos

B Magnitude and sign of the Casimir force
depend on geometry and materials

Lifshitz formula: (assumes continuous
and isotropic media)

o0 2rkd —1
— = 2kpgT Z/ o 2 ( - — 1) Tk(ign)
n/c or" A=TE, TM TALT A2 wy, = i€, = 2minkgT/h

Q Reflection coefficients at imaginary frequencies =3 Kramers-Kronig
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9 The gap d sets a cut-off frequency: cut—ost ~ ¢/d
Ford = 200nm — 1ym ==  frequencies in the near-infrared/optical

Reflection coefficients:
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B |deal attractive limit
Casimir 1948 : :
F_ ™ he
A 240 d4
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B |deal attractive limit
Casimir 1948 : !
F_ ™ he
A 240 d4
B Ideal repulsive limit
Boyer 1974
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NATIONAL LABORATORY

B |deal attractive limit
Casimir 1948 : :
F_ ™ he
A 240 d4
B Ideal repulsive limit
Boyer 1974
F_ 7T @ he $ >
A 8 240 d4

B Real repulsive limit  €(i€) < p(i€)
Casimir repulsion is associated with strong
electric-magnetic interactions. However, natural
occurring materials do NOT have strong
magnetic response in the optical region,i.e. u =1
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B |deal attractive limit
Casimir 1948 : :
F_ ™ he
A 240 d4
B Ideal repulsive limit
Boyer 1974
F_ 7T @ he $ >
A 8 240 d4

B Real repulswe limit  e(i&) < p(i€) —> Metamaterials
Casimir repulsion is associated with strong
electric-magnetic interactions. However, natural
occurring materials do NOT have strong
magnetic response in the optical region,i.e. u =1
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Physicists have 'solved' mystery of levitation - Telegraph
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Quantum levitation with MMs? .\ alamos

Transformation media  Leonhardt et al (2007)

Perfect lens: EM field in -b<x<0 is mapped into

x’. There are two images, one inside the device
and one in b<x<2b.
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Transformation media  Leonhardt et al (2007)

Perfect lens: EM field in -b<x<0 is mapped into
x’. There are two images, one inside the device
and one in b<x<2b.

Casimir cavity:  a' = |a — 2b|

When a< 2b (plates within the imaging range of
the perfect lens)

oU 0Oa’ h 2

=> f= “5d 90 24007 => Repulsion
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Transformation media  Leonhardt et al (2007)

Perfect lens: EM field in -b<x<0 is mapped into

x’. There are two images, one inside the device
and one in b<x<2b.

Casimir cavity:  a' = |a — 2b|

When a< 2b (plates within the imaging range of
the perfect lens)

oU 0Oa’ h 2

=> f= “5d 90 24007 => Repulsion

For real materials, however .....

e According to causality, no passive medium (€’ (w) > 0) can sustain €, u ~ —1
over a wide range of frequencies. In fact, (&), u(¢§) >0

e Another proposal is to use an active MM ( €’ (w) < 0) in order to get
repulsion. But then the whole approach breaks down, as real photons would
be emitted into the quantum vacuum.




Metamaterials for Casimir . Lok Alamos

8 Drude-Lorentz model: . .
Typical separations

3, d = 200 — 1000 nm
€a(w) =1~ w? —w? 440
&
Q2
po(w) =1— Mo Infrared-optical frequencies
w? —w?, il aw P q
Q/27 =5 x 10" Hz
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Attraction-repulsion crossover

aﬁ)s Alamos
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* Ideal attraction
[/Q=0.1

| 1/92=0.01
" I/2=0.0

Ideal repulsion
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A slab made of Au (p = 19.3 gr/cm?) of width § = 1um could levitate in
front of one of these MMs at a distance of d ~ 110 nm !!!

Casimir and metamaterials, Henkel et al (2005)

Casimir and surface plasmons, Intravaia et al (2005)
van der Waals in magneto-dielectrics, Spagnolo et al (2007)
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Some other important issues... -icsalamos

— Metamaterial without Drude BG
—— Metamaterial with Drude BG

@ Effects of Drude background
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Drude part MM resonance
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As the Drude background may overwhelm the a(”m)
resonant contribution in the low frequency limit, =%  €(i§) > p(i)
it may kill repulsion completely!
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0.08 — — Metamaterial without Drude BG
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As the Drude background may overwhelm the a(”m)
resonant contribution in the low frequency limit, =%  €(i§) > p(i)
it may kill repulsion completely!

@ Effects of MM anisotropy

It is possible to derive a more complicated Lifshitz formula
for continuous, anisotropic magneto-dielectric materials  €;;(w)  fij (w)

Anisotropy typically reduces the magnitude of the possible Casimir
repulsion, as compared to an ideally isotropic metamaterial
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O In principle, metamaterials can strongly influence the
quantum vacuum, providing a route towards quantum
levitation.

0O However, we believe that previous works have been overly
optimistic about the feasibility of quantum levitation via MMs.

O We have analyzed new important effects influencing
Casimir repulsion in metamaterials:

Q@ Non-resonant optical response (Drude background)
Q@ Anisotropic permittivities and/or permeabilities
@ Different models for optical response (Drude, Drude-Lorentz, etc)




